metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lesego J. Moitsheki,* Susan A. Bourne and Luigi R. Nassimbeni

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

Correspondence e-mail: mlesego@science.uct.ac.za

Key indicators

Single-crystal X-ray study T = 203 KMean σ (C–C) = 0.007 Å Disorder in main residue R factor = 0.036 wR factor = 0.107 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A coordination polymer of thallium(III) nitrate with 4,4'-bipyridine *N*,*N*'-dioxide

The title compound, poly[[tris(μ_2 -4,4'-bipyridine *N*,*N*'-dioxide)bis[trinitratothallium(III)]] dichloromethane disolvate], [Tl₂(NO₃)₆(C₁₀H₈N₂O₂)₃]·2CH₂Cl₂, forms a ladder polymer with channels which accommodate the CH₂Cl₂ solvent molecules.

Comment

The construction of coordination polymers of different metals continues to be an area of special interest in crystal engineering. Recent examples have afforded interesting open-framework metal-organic structures (Biradha & Fujita, 2000; Eddaoudi *et al.*, 2001; Vujovic *et al.*, 2003). Various coordination polymers of bipyridyl ligands with lanthanides (Long *et al.*, 2002; Min & Lee, 2002; Dalgarno *et al.*, 2004; Dalgarno *et al.*, 2005) and transition metals (Aragoni *et al.*, 2005; Ghosh *et al.*, 2005; Ma *et al.*, 2005) have recently been reported. We report here the structure of a coordination polymer, (I), of Tl(NO₃)₃ with 4,4'-bipyridine *N,N'*-dioxide (bpdo) as a bridging ligand; Fig. 1 shows the asymmetric unit. This structure is analogous to the terbium(III) compound reported by Long *et al.* (2002).

Compound (I) comprises a ladder-shaped coordination polymer (Fig. 2), forming channels which accommodate CH_2Cl_2 guest molecules (Fig. 3). The guest position is stabilized by weak hydrogen bonds to polymer nitrate O atoms (Table 1), while the ladder-shaped polymer chains stack above

© 2006 International Union of Crystallography All rights reserved

Received 18 January 2006 Accepted 13 February 2006

Figure 1

The asymmetric unit of the structure. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Both components are shown for the disordered atoms.

one another, also stabilized by $C-H\cdots O$ hydrogen bonds (Table 1). Bridging bpdo ligands form both the uprights and the rungs of the ladder, while all nitrate ligands are bidentate, giving nine-coordinate Tl.

Experimental

Compound (I) was prepared by layering an ethanol solution of 4,4'bipyridine N,N'-dioxide (0.10 mmol) on top of a layer of CH₂Cl₂ in which 0.05 mmol of Tl(NO₃)₃ had been placed (but not fully dissolved). The layers mixed over several days at ambient temperature and crystals grew at the interface.

Crystal data

$[Tl_2(NO_3)_6(C_{10}H_8N_2O_2)_3] \cdot 2CH_2Cl_2$	Z = 1
$M_r = 1515.22$	$D_x = 2.121 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
$a = 8.0425 (16) \text{\AA}$	Cell parameters from 35318
b = 11.687 (2) Å	reflections
c = 13.079 (3) Å	$\theta = 1.0-27.5^{\circ}$
$\alpha = 86.51 \ (3)^{\circ}$	$\mu = 7.11 \text{ mm}^{-1}$
$\beta = 79.83 \ (3)^{\circ}$	T = 203 (2) K
$\gamma = 78.75 \ (3)^{\circ}$	Block, colorless
$V = 1186.3 (4) \text{ Å}^3$	0.15 \times 0.10 \times 0.08 mm
Data collection	

Nonius KappaCCD diffractometer	4847 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.038$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.435, T_{\max} = 0.560$	$k = -15 \rightarrow 15$
35318 measured reflections	$l = -16 \rightarrow 16$
5387 independent reflections	

Figure 3

The packing of compound (I), viewed along [100], showing guest molecules residing in the channels. CH_2Cl_2 guests are represented by van der Waals radii.

Refinement

- - - -

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 7.0981P]
$wR(F^2) = 0.107$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.008$
5387 reflections	$\Delta \rho_{\rm max} = 1.40 \ {\rm e} \ {\rm \AA}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

lable l			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1A - H1A \cdots O28^{i}$	0.98	2.46	3.292 (11)	143
$C1A - H2A \cdots O24^{ii}$	0.98	2.52	3.148 (9)	122
$C1A - H2A \cdots O25^{ii}$	0.98	2.58	3.362 (9)	137
C4-H13···O23 ⁱⁱⁱ	0.94	2.42	3.100 (7)	129
$C12-H16\cdots O32^{iv}$	0.94	2.55	3.119 (8)	120
$C14-H18\cdots O16A^{v}$	0.94	2.45	3.260 (17)	144

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y, -z; (v) -x + 1, -y + 1, -z.

The pyridyl O atoms of one bpdo ligand are disordered over two positions, with refined site-occupancy factors of 0.60:0.40 (12) and 0.60:0.40 (11); these disordered atoms were refined isotropically. H

atoms were placed in geometrically calculated positions and refined using a riding model, with C–H = 0.94 (aromatic) and 0.98 Å (solvent), and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The largest residual electron-density peak is 0.44 Å from O9*B*, one of the disordered atoms.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001) and *POV-RAY* (Persistence of Vision, 1999); software used to prepare material for publication: *SHELXL97*.

We thank the South African National Research Foundation (FA2004032500017), the University of Cape Town Research Committee and the CSIR (LJM) for financial support.

References

- Aragoni, M. C., Arca, M., Champness, N. R., De Pasquale, M., Devillanova, F. A., Isaia, F., Lippolis, V., Oxtoby, N. S. & Wilson, C. (2005). *CrystEngComm*, 7, 363–369.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Biradha, K. & Fujita, M. (2000). J. Chem. Soc. Dalton Trans. pp. 3805-3810.
- Dalgarno, S. J., Hardie, M. J., Atwood, J. L. & Raston, C. L. (2004). Inorg. Chem. 29, 649–652.
- Dalgarno, S. J., Hardie, M. J., Atwood, J. L., Warren, J. E. & Raston, C. L. (2005). New J. Chem. 29, 649–652.
- Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368–4369.
- Ghosh, A. K., Ghoshai, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2005). Inorg. Chem. 44, 1786–1793.
- Long, D.-L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026–2033.
- Ma, B.-Q., Sun, H.-L. & Gao, S. (2005). Inorg. Chem. 44, 837-839.
- Min, D. & Lee, S. W. (2002). Bull. Korean Soc. 23, 948-952.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Persistence of Vision (1999). POV-RAY. Version 3.1e.watcom.win32. URL: http://www.povray.org/.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Vujovic, D., Raubenheimer, H. G. & Nassimbeni, L. R. (2003). Dalton Trans. pp. 631–637.